A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator

نویسنده

  • B. F. SVAITER
چکیده

We propose a modification of the classical extragradient and proximal point algorithms for finding a zero of a maximal monotone operator in a Hilbert space. At each iteration of the method, an approximate extragradient-type step is performed using information obtained from an approximate solution of a proximal point subproblem. The algorithm is of a hybrid type, as it combines steps of the extragradient and proximal methods. Furthermore, the algorithm uses elements in the enlargement (proposed by Burachik, Iusem and Svaiter) of the operator defining the problem. One of the important features of our approach is that it allows significant relaxation of tolerance requirements imposed on the solution of proximal point subproblems. This yields a more practical proximal-algorithmbased framework. Weak global convergence and local linear rate of convergence are established under suitable assumptions. It is further demonstrated that the modified forward-backward splitting algorithm of Tseng falls within the presented general framework. Mathematics Subject Classifications (1991): 90C25, 49J45, 49M45.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators

In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...

متن کامل

Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems

In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth variational inequalities and incl...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

On the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean

In this paper we analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and Svaiter. One of the key points of our analysis is the use of a new termination criteria based on the εenlargement of a maximal monotone operator. The advantages of using this termination criterion it that its defin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999